
1 Copyright © #### by ASME

Proceedings of the Japan-USA Symposium on Flexible Automation, Ann Arbor, MI , July 23 - 26, 2000.

AN OPEN ARCHITECTURE INSPECTION SYSTEM

Elena R. Messina Hui-Min Huang Harry A. Scott

National Institute of Standards and Technology
Intelligent Systems Division

100 Bureau Drive Stop 8230
Gaithersburg, MD 20899-8230

{messina,huang,scott}@cme.nist.gov

ABSTRACT

The benefits of open architectures are not currently
available for most manufacturing equipment. We describe a
testbed for experimenting with an open architecture controller
for an inspection system. An initial taxonomy of categories of
openness is proposed, culminating in "plug and play," which
does not require a software rebuild. The testbed and its
constituent components are described with respect to these
categories of openness. We conclude that our testbed
demonstrates all of the openness categories except plug and
play.

INTRODUCTION

The machine tool industry is evolving towards the
pervasive use of open architecture controls, many of which are
available separately from the "iron." The benefits of open
architecture controllers include flexibility, customizability,
lower costs, and upgradeability. Manufacturing equipment
other than machine tools has not necessarily come as far in
availability or widespread use of open architecture controls. In
this category are robotic systems and inspection systems, such
as coordinate measurement machines. At the National
Institute of Standards and Technology’s Intelligent Systems
Division, we are developing open architecture controllers for a
variety of manufacturing applications. In this paper, we
describe our controller for an integrated inspection system.

NOMENCLATURE

BG Behavior Generation

CMM Coordinate Measuring Machine

DMIS Dimensional Measuring Interface Standard

EX Executor

FBICS Feature-Based Inspection and Control

IEEE Institute of Electrical and Electronics Engineers

ISAM Intelligent System Architecture for Manufacturing

KB Knowledge Base

NML Neutral Messaging Language

PL Planning

RCS Real-Time Control Systems

SP Sensory Processing

VJ Value Judgement

VRML Virtual Reality Modeling Language

WM World Modeling

DEFINING OPENNESS

A controller for manufacturing equipment may have
varying degrees of openness. We are proposing an initial
taxonomy of openness, described in terms of increasing
openness in Table 1.

An Institute of Electrical and Electronic Engineers (IEEE)
standards dictionary (IEEE, 84) defines the following terms as:

Computer component: any part, assembly, or subdivision of
a computer

Software component: a basic part of a system or program

Subsystem: a division of a system that in itself has the
characteristics of a system

Software subsystem: a group of assemblies or components or
both combined to perform a single function.

2 Copyright © #### by ASME

Table 1: A Taxonomy of Controller Openness

Type of Openness Description
Data or Software

Openness
Software Rebuild

Required
Output Data Openness making data available at intermediate points within

the control loops (e.g., providing the raw measured
points so that custom analysis packages may be
applied to assess the quality of the part)

Data No

Input Data Openness accepting data at certain points within the control
loops (e.g., providing user control of number of
measure points that are generated for certain features,
altering the velocity of non-measurement moves)

Data No

Limited Component
Openness

having a limited set of coarse-grained replaceable
components or interfaces specified (e.g., allowing for
custom operator interfaces to be integrated)

Software Yes

Subsystem Openness allowing subsystems to be swapped (e.g.,
replacement of servo nodes with different
algorithms)

Software Yes

Algorithm &
Component Openness

allowing access below the control node resolution
(e.g., replacing a trajectory planner within the
behavior generation portion of a control node)

Software Yes

Plug and Play allowing plug and play capabilities, where a piece of
hardware can be swapped and the system software
recognizes the change and adapts without having to
rebuild the system

Software No

We further define the following:

Node or controller node: a software unit capable of
performing intelligent behavior based on the node’s intelligent
perception process, as specified in the Real-Time Control
System (RCS) reference model architecture, described in detail
in a later section. A node, therefore, typically encompasses
multiple software components

A FRAMEWORK FOR OPENNESS

Several factors facilitate a system’s openness. Assumptions
regarding which hardware, operating system, or other
infrastructure and which versions thereof must be known. The
major functions of the system must be well defined. The
“boundaries” of the components, sub-systems, and other
modules must be clearly defined. Their interfaces must be
unambiguously specified, but just as importantly, the behavior
and constraints of these sub-systems must be clarified. These
definitions are critical in order to ensure that vendors provide
subsystems that function correctly with the rest of the system.
Ideally, the component and interfaces are based on standards.

A framework describing the controller – its software pieces
and their interfaces to hardware – is necessary in order to
communicate the required definitions to the builders or
enhancers of the various pieces. In the Intelligent Systems
Division, we have been developing a reference architecture that
can serve as such a framework (Albus, 94; Huang et al., 95).
The RCS Architecture provides a building block approach for
construction of complex systems. RCS specifies the

decomposition of the system according to functionality and
physical components along one dimension and into appropriate
levels within a hierarchy along another dimension. The
Intelligent System Architecture for Manufacturing (ISAM) is a
version of RCS for advanced manufacturing systems. In
ISAM, the basic building block is a control node, which
contains the essential elements necessary for intelligent control:
sensory processing (SP), behavior generation (BG), world
modeling (WM), and value judgement (VJ). Associated with
WM is a Knowledge DataBase (KB), which contains longer-
term information. A graphical depiction of an ISAM node is
shown in Fig. 1. Each node receives goals from its superior
and, through the orchestration of BG, WM, VJ, and SP,
generates a finer resolution set of goals for its subordinate
nodes. The RCS control node uses an estimated model of the
world, generated via SP and WM, to assess its progress with
respect to the goals it was given and to make necessary
adjustments to its behavior. BG is further broken out into
sub-modules (not shown in Fig. 1), including a planning
portion (PL) and a set of executors (EX), one for each
subordinate. PL generates plans for each subordinate, while the
corresponding EX executes the plan, coordinating actions
between subordinates, and correcting for errors between the plan
and the state of the world estimated by WM.

The control nodes are assembled into an architecture,
guided by the RCS/ISAM methodology, which is designed to
control complexity of the individual levels within the
hierarchy. The decomposition for manufacturing systems is
according to the following levels: shop, cell, workstation, task,
elemental move (emove), primitive (prim), and servo. This

3 Copyright © #### by ASME

hierarchy covers the shop floor organization, where work cells
have several pieces of equipment, and a workstation has several
subsystems (e.g., a machine with a tool magazine and tool
changer). The task level corresponds to a subsystem within the
individual workstation, and the levels below task accomplish
the movements and other actions of the individual subsystem.
Only at the lowest level, servo, does the software interact with
hardware. The actuators and sensors interface with this level.
This helps to isolate the interfaces to specific drives or sensors.

Several commercial and research systems have been built
based on RCS (Albus, 95). These include coal mining
automation (Horst, 93), the NBS/NASA Standard Reference
Model Architecture for the Space Station Telerobotic Servicer
(NASREM) (Albus et al., 89), and a control system for a U.S.
Postal Service Automated Stamp Distribution Center (USPS,
91). Manufacturing applications include the Open Architecture
Enhanced Machine Controller (Albus and Lumia, 94; Proctor et
al., 93), a welding cell (Rippey and Falco, 97), and several
systems in the National Advanced Manufacturing Testbed (Luce
et al., 99).

AN ARCHITECTURE FOR INSPECTION

Figure 2 shows the architectural decomposition for an
inspection system. This is the architecture that is used in our
testbed. Within that testbed, a CMM and associated devices
are integrated into a cell that communicates with the rest of the
enterprise. The level above the cell (shop) or an operator
sends a command to initiate an inspection of a part. The cell
notifies its superior when it completes the inspection and if
there were any problems. The coordinate measurement machine
is a Sheffield Cordax1 three axis cartesian arm. A touch probe
and a charged-couple device (CCD) camera are affixed to the
end of the arm. Our system also incorporates a feature-based
inspection planner and the ability to do fixtureless inspection.

1 Disclaimer: Certain commercial equipment, instruments, or materials
are identified in this article to adequately specify the experimental procedure.
Such identification does not imply recommendation or endorsement by NIST,
nor does it imply the materials or equipment identified are necessarily the best
for the purpose.

The cell level receives a command to inspect a previously
made part and makes a cell level process plan. The planning
process converts the goal of inspecting the part into a set of
tasks to inspect segments of the part based on setup
requirements. A setup means a particular placement or fixturing
of the part on the inspection table. A prismatic part often
requires multiple setups so that the multiple facets can be
inspected. The knowledge requirement to facilitate the
planning includes the descriptions for the part, the features on
the part, the optional fixture, the plan format, and the setup.
The generated plan is executed and the resulting commands are
given to the workstation controller, one setup a time, to make
the corresponding plans.

The workstation controller performs two major functions:
inspection planning and inspection coordination. First, the
workstation controller generates inspection process plans for a
setup, as commanded by the cell controller. The process plan
includes a series of inspection tasks corresponding to the
features associated with the setup. The operator can specify
which features to inspect and how thoroughly they should be
inspected.

Second, the workstation controller coordinates the
execution of an inspection operation. We have developed a
vocabulary to describe the coordination plan steps. The steps
include loading and unloading a part, using the vision
subsystem to estimate the pose of the part, and running the
inspection programs for a given setup. Operators use a text
editor to generate the plan and the controller is equipped with
an interpreter to interpret the plans.

This testbed is capable of performing both fixtured and
fixtureless inspection. In the fixtureless inspections, once the
part is placed, the vision controller subordinate is commanded
to perform a perception process to estimate the part pose.
Finally, the workstation executes the generated inspection
process plans. Two subordinates, the Coordinate Measuring
Machine (CMM) and fixturing, receive and execute the
workstation output commands.

The CMM task controller performs two major functions.
First, it generates inspection programs, written in the
Dimensional Measuring Interface Standard (DMIS) language,
for a feature as command by the workstation level. Second, the
DMIS interpreter translates the DMIS statements into command
language native to the inspection controller. The executor
sends these messages to the three emove subordinates, for
motion control of the CMM, inspection tool control, and
vision-based part pose estimation. The task controller also
receives inspection data, which the interpreter uses to compute
and evaluate the inspection results.

The fixturing controller performs the fixturing or placement
of the part according to the setup specification. Control system
developers provide the placement or fixturing instructions,
displayed via a web browser, to facilitate remote operations of
the node. The execution is performed by an operator.

Knowledge
Database

Sensory
Processing

Value
Judgement

World
Modeling

Behavior
Generation

COMMANDED TASK
(GOAL)

PLAN
UPDATE

PREDICTED
INPUT COMMANDED

ACTIONS
(SUBGOALS)

STATE

OBSERVED
INPUT

EVALUATE
SITUATION

PERCEIVED
OBJECTS &
EVENTS

PLAN
RESULTS

Figure 1: An ISAM Control Node

4 Copyright © #### by ASME

Figure 2: The Inspection Workstation Control Hierarchy

The CMM emove controller receives the interpreted motion
commands, traverse or measure, and moves the CMM
accordingly. The speeds and accelerations must be specified,
either by the task controller as a part of the command
parameters, or by the emove controller. In the current
implementation, we use the latter. When traverse is done in an
open space, the controller uses a high speed. The measure
commands use a low speed.

The tool controller receives commands to change the probe.
The probe type and installation instructions are displayed on a
web page. The execution is performed by an operator, who
clicks a done or error button on the web page to indicate
completion. An error signal halts the entire operation.

The part pose estimation subsystem uses vision to
determine position and orientation of the part to facilitate the
coordinate system transformation among the different levels.

The primitive and servo levels deal with the trajectory
generation and servoing of the CMM arm according to input
commands.

All the nodes execute initialization tasks at the beginning
of an operation to verify the interfaces and initialize certain
variables. Some of the nodes execute exit, close, halt, or stop
tasks to manage the stopping and restarting of operations.

OPENNESS ASPECTS OF THE INSPECTION
ARCHITECTURE

The inspection testbed we have built demonstrates
openness at a variety of levels. The nodes and their interfaces
are clearly defined, enabling future development of plug and
play. Precise definitions of some of the software components
internal to control nodes also enable plug and play. We have
also been experimenting with different types of open-system
integration approaches. One of them uses C++ code templates,
called the Generic Shell to build skeleton control hierarchies for
applications with the capability to easily swap in and out
software components. Another is based on a commercial tool,
called ControlShell, by Real-Time Innovations, Inc., that offers
a similar capability. Intermediate plans and data are accessible
throughout the hierarchy. We will describe briefly the open
aspects of the testbed and how they can be utilized.

5 Copyright © #### by ASME

The testbed was built using the Neutral Messaging
Language (NML), which enables definition of messages that
can be sent across a network. NML is built on top of the
Communications Management System (CMS), which provides
uniform access to buffers to multiple reader or writer processes
on the same processor, across a backplane, or over a network.
All communications occurring between nodes use NML, hence
their command and status are readily available for diagnosis and
other uses. A diagnostic tool, which was developed within
ISD, graphically displays the hierarchy’s status and messages.
If a problem develops in the functioning of the system, its
location can be quickly traced by looking at the diagnostic tool.
Figures 3 and 4 show screen shots from the diagnostic tool.
Figure 3 shows a different perspective from Fig. 2. In Fig. 3,
the control nodes are broken out into two computing processes,
planning and execution.

The commands between nodes can also be captured and
used for animations and simulations. Our testbed included
two such tools, as shown in Fig. 2. A simulation of the
Cordax, built using Envision package (by Deneb), was hooked
into the hierarchy via NML. It listened to the commands that
were sent to the Emove level from the Task node. These
"goto" commands were read by the Envision program, which
used the kinematic model of the Cordax to compute joint
motions to achieve the desired positions. Inspection programs
can be validated at a high level using this simulation instead of
using the Cordax, which is a more expensive resource. The
second visualization tool was built using Virtual Reality
Modeling Language (VRML). A model of the Cordax
geometry was defined in VRML. The VRML display listened
to the joint position feedback messages coming from Emove
into Task and used those to drive the motion of the model,
which could be displayed on any system with a VRML viewer.
This tool can be used to validate motion algorithms at a lower
level.

The process planning system is the Feature-Based
Inspection and Control System (FBICS). FBICS provides
human-readable files containing the inspection plans at the cell,
workstation, and task levels. These files’ contents are all
defined by EXPRESS schemas. The cell level produces plans
for each of the setups required to inspect the part. The
workstation level produces plans for inspecting the desired
features. The task level planner creates the DMIS inspection
code. Users also have access to files that define the behavior
of the FBICS system. For example, the shop_options file lets
users select which features to inspect. They can specify that the
system inspect all features, inspect no features, inspect any
feature with a parameter having a tolerance, inspect any feature
which has any parameter with a “tight” tolerance, or let the user
decide for each feature. The definition of what is a "tight"
tolerance is another user option.

To facilitate openness, the testbed utilizes standards
wherever possible. FBICS uses various International
Organization for Standardization (ISO) standards. It uses
EXPRESS as its modeling language. STEP AP 224, which
specifies parametric machining features, is used for defining
features to be inspected as well as the overall part geometry.

STEP AP 203 is used to define fixturing. The inspection
programs are represented by the Dimensional Measuring
Interface Standard (DMIS).

The system was implemented in a distributed manner.
Several different computers and operating systems were used in
the testbed. We used a Power PC/VxWorks target for real-time
control, a Sun Sparc/Solaris target for the vision subsystem,
and two more separate Sparc/Solaris platforms for inspection
planning and plan execution. The Envision simulation ran on
an SGI/Irix workstation. The VRML simulation was run from
a PC with Windows NT. Each node ran as one or more
separate processes. The organization of the overall architecture
in this multi-process and distributed manner facilitates
openness. Once the cost of separating out modules into
different processes and debugging their interfaces has been paid,
other users of the same architecture can leverage the advantages
of modularity.

Subsystem replacement was used in several parts of the
testbed. Primarily, this was done for swapping a simulated
subsystem for the real one that ran the hardware. For example,
the developer testing the higher levels of the hierarchy (Cell
through task) could substitute the real CMM or Vision
branches with simulated versions. Similar substitutions were
performed regularly at lower levels, such as the Prim and Servo
level.

Intra-node openness is also present in the inspection
testbed. The FBICS planners have clearly defined application
programming interfaces (APIs). These can be used in other
testbeds or can be replaced with different underlying
algorithms. A great deal of effort was spent investigating
component specifications under support of another project.
The part pose estimation algorithm, which resides within the
vision controller branch of the hierarchy, was used to study
component specifications to facilitate component-based software
development (Horst et al., 97). The specifications of this
component are extremely detailed and are an effort in
understanding how to represent semantic as well as syntactical
information about a piece of software.

The testbed does not yet demonstrate plug and play
openness. Having exercised the various other types of
openness which are prerequisites to plug and play, we are
confident that it will be achievable. A plug and play
application of interest to inspection system users is the ability
to swap sensors and have the system identify the type of sensor
and automatically update the parameters for planning its use.

FUTURE DIRECTION

 Now that we have completed the basic implementation of
a testbed for open architectures for inspection, we are planning
to undertake further experiments in validating the openness.
We would like to collaborate with industry to validate whether
the architecture is a reasonable one from their perspective and to
conduct joint experiments to verify the different types of
openness.

6 Copyright © #### by ASME

Figure 3: Diagnostic tool—the Hierarchical View

Figure 4: Diagnostic Tool – the Detailed Status View

7 Copyright © #### by ASME

CONCLUSION

We have described a testbed for experimenting with open
architectures for inspection systems. We have proposed a
taxonomy of openness for inspection controllers, which defines
different degrees of openness. Our testbed has demonstrated
both data and software openness. Intermediate planning results
and other data are accessible through clearly defined interfaces
or data files. Users can input control parameters to the system
through interfaces or data files. Software subsystems and
components within those subsystems may be replaced because
of clearly defined module interfaces. These various kinds of
openness are prerequisites for plug and play – where a piece of
hardware can be dynamically swapped without requiring a
rebuild of the system’s software. We expect to demonstrate
plug and play within the inspection testbed. Our intention is
to collaborate with industry to study open architectures for
inspection and to jointly promote their benefits.

REFERENCES

Albus, J.S., Lumia, R., Fiala, J., and Wavering, A. 1989.
NASREM – The NASA/NBS Standard Reference Model for
Telerobot Control System Architecture. Proc. of the 20th
International Symposium on Industrial Robots, Tokyo, Japan.

Albus, J.S., 1994, A Reference Model Architecture for
Intelligent Systems Design, NISTIR 5502, National Institute of
Standards and Technology, Gaithersburg, MD.

Albus, J.S., Lumia, R., 1994. The Enhanced Machine
Controller (EMC): An Open Architecture Controller for
Machine Tools. Journal of Manufacturing Review, Vol. 7, No.
3, pgs. 278-280.

Albus, J. S., 1995. The NIST Real-time Control System
(RCS): An Application Survey. Proc. of the AAAI 1995
Spring Symposium Series, Stanford University, Menlo Park,
CA.

Horst, J. A., 1993. Coal Extraction Using RCS. Proc. of
the 8th IEEE International Symposium on Intelligent Control,
Chicago, IL, pp. 207-212.

Horst, J. A., Messina, E., Kramer, T., Huang, H. M.,
1997. Precise Definition of Software Component
Specifications. Proc. of the 7th Symposium on Computer-
Aided Control System Design (CACSD '97), Gent, Belgium,
pp.145-150.

Huang, H., Michaloski, J., Tarnoff, N., and Nashman, M.,
1995. An Open Architecture Based Framework for Automation
and Intelligent System Control, Invited Paper for the IEEE
Industrial Automation and Control Conference 95,, Taipei,
Taiwan, May 1995.

IEEE Standard Dictionary of Electrical and Electronic
Terms, ANSI-IEEE Std. 100-1984, The Institute of Electrical
and Electronic Engineers, New York, NY.

Luce, M. E. Stieren, D. C. , Densock, R. J., 1999.
National Advanced Manufacturing Testbed, NISTIR 6383,

National Institute of Standards and Technology, Gaithersburg,
MD.

Proctor, F., et al, Open Architectures for Machine Control.
1993. NISTIR 5307, National Institute of Standards and
Technology, Gaithersburg, MD.

Rippey, W., Falco, J., 1997, The NIST Automated Arc
Welding Testbed, Proceedings of the 7th International
Conference on Computer Technology in Welding, San
Francisco, CA.

United States Postal Service, 1991, Stamp Distribution
Network, Advanced Technology & Research Corporation,
Burtonsville, MD. USPS Contract Number 104230-91-C-3127
Final Report.

